Discussion:
Folding@Home Yields Results Published in Nature
Gordon Mohr
2002-10-22 16:58:44 UTC
Permalink
***@home scientists report first distributed computing success
http://www.stanford.edu/dept/news/pr/02/folding1023.html

Congrats to Adam Beberg and Cosm, creditted as key enablers of
***@Home:

http://folding.stanford.edu/about.html


# 10/21/02
#
# Mark Shwartz, News Service: (650) 723-9296, ***@stanford.edu
#
# EDITORS: The Nature study, "Absolute comparison of simulated and
# experimental protein-folding dynamics," is available online at
# www.nature.com. A photograph of Stanford Assistant Professor Vijay
# Pande can be downloaded at http://newsphotos.stanford.edu (slug:
# "Pande").
#
# Relevant Web URLs:
# http://folding.stanford.edu
# http://www.stanford.edu/group/pandegroup/
# http://www.research.ibm.com/bluegene/
#
#
# ***@home scientists report first distributed computing success
#
# As you read this sentence, millions of personal computers around the
# world are working overtime -- performing complex computations on their
# screensavers in the name of science. This growing Internet phenomenon,
# known as "distributed computing," is being used for everything from
# the search for extraterrestrial intelligence to the design of new
# therapeutic drugs.
#
# Now, for the first time, a distributed computing experiment has
# produced significant results that have been published in a scientific
# journal. Writing in the advanced online edition of Nature magazine,
# Stanford University scientists Christopher D. Snow and Vijay S. Pande
# describe how they -- with the help of 30,000 personal computers --
# successfully simulated part of the complex folding process that a
# typical protein molecule undergoes to achieve its unique, three-
# dimensional shape. Their findings were confirmed in the laboratory of
# Houbi Nguyen and Martin Gruebele, scientists from the University of
# Illinois at Urbana-Champaign who co-authored the Nature study.
#
# Understanding disease
#
# Every protein molecule consists of a chain of amino acids that must
# assume a specific three-dimensional shape to function normally.
#
# "The process of protein folding remains a mystery," said Pande,
# assistant professor of chemistry and of structural biology at
# Stanford. "When proteins misfold, they sometimes clump together,
# forming aggregates in the brain that have been observed in patients
# with Alzheimer's, Parkinson's and other diseases."
#
# How proteins fold into their ideal conformation is a question that has
# tantalized scientists for decades. To solve the problem, researchers
# have turned to computer simulation -- a process that requires an
# enormous amount of computing power.
#
# "One reason that protein folding is so difficult to simulate is that
# it occurs amazingly fast," Pande explained. "Small proteins have been
# shown to fold in a timescale of microseconds [millionths of a second],
# but it takes the average computer one day just to do a one-nanosecond
# [billionth-of-a-second] folding simulation."
#
# Simulating protein folding is often considered a "holy grail" of
# computational biology, he added. "This is an area of hot competition
# that includes a number of heavyweights, such as IBM's $100 million,
# million-processor Blue Gene supercomputer project."
#
# ***@home
#
# Two years ago, Pande launched ***@home -- a distributed computing
# project that so far has enlisted the aid of more than 200,000 PC
# owners, whose screensavers are dedicated to simulating the protein-
# folding process.
#
# The Stanford project operates on principles similar to earlier
# projects, such as ***@home, which allows anyone with an Internet
# connection to search for intelligent life in the universe by
# downloading special data-analysis software. When a ***@home
# screensaver is activated, the PC begins processing packets of radio
# telescope data. Completed packets are sent back to a central computer,
# and new ones are assigned automatically.
#
# For the Nature study, Pande and Snow, a biophysics graduate student,
# asked volunteer PCs to resolve the folding dynamics of two mutant
# forms of a tiny protein called BBA5. Each computer was assigned a
# specific simulation pattern based on its speed.
#
# With 30,000 computers at their disposal, Pande and Snow were able to
# perform 32,500 folding simulations and accumulate 700 microseconds of
# folding data. These simulations tested the folding rate of the protein
# on a 5-, 10- and 20-nanosecond timescale under different temperatures.
# Using these data, the scientists were able to predict the folding rate
# and trajectory of the "average" molecule.
#
# Experimental verification
#
# To confirm their predictions, the Stanford team asked Gruebele and
# Nguyen to conduct "laser temperature-jump experiments" at their
# Illinois lab. In this technique, an unfolded protein is pulsed with a
# laser, which heats the molecule just enough to cause it to bend into
# its native state. A fluorescent amino acid imbedded inside the
# molecule grows dimmer as the protein folds. Researchers use the
# changing fluorescence to measure folding events as they occur.
#
# The results of the laser experiments were in "excellent agreement"
# with the ***@home predictions, Pande and his colleagues concluded.
# Specifically, the computers predicted that one experimental protein
# would fold in 6 microseconds, while laboratory observations revealed
# an actual folding time of 7.5 microseconds.
#
# "These experiments represent a great success for distributed
# computing," Pande said. "Understanding how proteins fold will likely
# have a great impact on understanding a wide range of diseases."
#
# The Nature study was supported by the National Institutes of Health,
# the American Chemical Society, Intel and the Howard Hughes Medical
# Institute.
#
#
#
# Caroline Uhlik is a science writing intern at Stanford News Service.
#
# -30-
#
# By Caroline Uhlik and Mark Shwartz




- Gordon
Lucas Gonze
2002-10-22 18:01:58 UTC
Permalink
Post by Gordon Mohr
http://www.stanford.edu/dept/news/pr/02/folding1023.html
Congrats to Adam Beberg and Cosm, creditted as key enablers of
http://folding.stanford.edu/about.html
And not to miss this nice bit of writing from Adam:
http://www.mithral.com/projects/cosm/ch-00.html

*click click*

You got a new system today didn't you, lots of megahertz and gigabytes
with all the toys, top of the line everything. Now what are you gonna do
with it? Type email? Play some games for a couple hours a day?

In the time you read that your computer did a few billion nothings.

What a waste.

*click click click*

Meanwhile, all over the world, people are desperate for somethings. A
graduate student trying to figure out protein folding, and an artist is
trying to render a short film. Alone it will take them months, maybe years
to complete their projects.

The net could do it in a few minutes.

You wouldn't even know it's running. You can't tell a nothing from a
something, only the computer knows and it doesn't care.

*click*

You like to say you're on the net to impress your friends, but you aren't
a part of it, you just use it. Still doing nothings instead of somethings.

Get with it, two plus two isn't four anymore it's five.

By doing more somethings everyone wins, the student gets their project
done, and you get to see the new film and brag about how you helped. And
then when you have a big project to get done, you get to be the one that
has their something done faster.

*click click*
So many somethings need to be done, enough to keep every computer busy
forever. Somewhere there is someone waiting for work to get done, and you
can help.

So what are you waiting for?

*click*

Loading...